Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 172829, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692332

RESUMEN

Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.

2.
Sci Total Environ ; 927: 172262, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583605

RESUMEN

South and Southeast Asia (SSA) emitted black carbon (BC) exerts potential effects on glacier and snow melting and regional climate change in the Tibetan Plateau. In this study, online BC measurements were conducted for 1 year at a remote village located at the terminus of the Mingyong Glacier below the Meili Snow Mountains. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to investigate the contribution and potential effect of SSA-emitted BC. In addition, variations in the light absorption characteristics of BC and brown carbon (BrC) were examined. The results indicated that the annual mean concentration of BC was 415 ± 372 ngm-3, with the highest concentration observed in April (monthly mean: 930 ± 484 ngm-3). BC exhibited a similar diurnal variation throughout the year, with two peaks observed in the morning (from 8:00 to 9:00 AM) and in the afternoon (from 4:00 to 5:00 PM), with even lower values at nighttime. At a short wavelength of 370 nm, the absorption coefficient (babs) reached its maximum value, and the majority of babs values were < 20 Mm-1, indicating that the atmosphere was not overloaded with BC. At the same wavelength, BrC substantially contributed to babs, with an annual mean of 25.2 % ± 12.8 %. SSA was the largest contributor of BC (annual mean: 51.1 %) in the study area, particularly in spring (65.6 %). However, its contributions reached 20.2 % in summer, indicating non-negligible emissions from activities in other regions. In the atmosphere, the SSA BC-induced radiative forcing (RF) over the study region was positive. While at the near surface, the RF exhibited a significant seasonal variation, with the larger RF values occurring in winter and spring. Overall, our findings highlight the importance of controlling BC emissions from SSA to protect the Tibetan Plateau against pollution-related glacier and snow cover melting.

3.
Sci Total Environ ; 930: 172843, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38685421

RESUMEN

In modern industries, rare earth elements (REEs) are considered as essential metals and invaluable natural resources. Ion-adsorption deposits (IADs) are repositories of REE in the weathering crust soils, in which REEs are adsorbed on clay minerals. In the last few decades, the mining of REEs from IADs has caused substantial environmental damage owing to the overuse of leaching agents for the desorption and transport of REEs in weathering crust soils. These environmental issues have sparked extensive research interest in modeling REE transport dynamics in weathering crust soils. Nevertheless, because current models treat REE adsorption and transport independently, they do not accurately describe REE transport dynamics. Therefore, in this study, a unified workflow that synergizes adsorption and transport dynamics is proposed to predict REE transport. The adsorption of REEs on IADs was found to follow the Freundlich isotherm with the coefficient of determination exceeding 0.9826. The adsorption capacities of La3+, Sm3+, Er3+, and Y3+ reach 1.3127, 1.4423, 1.5793, and 1.1061 mg g-1 at 300 ppm, respectively. For the breakthrough curve, an advection-dispersion-adsorption-equation (ADAE) model was developed and utilized to accurately and reliably predict REE transport dynamics in soil columns. It was found the saturation time of REEs in soils is 39.22, 44.15, 50.64, and 32.17 h, respectively at 2 mL min-1 and decreased with the increase of flow velocity. The upper and lower limits of REE transport are ADAE-Freundlich and ADAE-Toth. More importantly, the model was applied to simulate REEs transport in field-scale weathering crusts over 100 years and predict REE accumulation in the highly weathered layered, which is found in natural weathering crusts. The qualitative prediction of REE transport dynamics in weathering crusts may help fundamentally lower the usage of leaching agents and mitigate concomitant the environmental impacts of mining.

4.
Environ Pollut ; 348: 123857, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537794

RESUMEN

Microplastics in drinking water captured widespread attention following reports of widespread detection around the world. Concerns have been raised about the potential adverse effects of microplastics in drinking water on human health. Given the widespread interest in this research topic, there is an urgent need to compile existing data and assess current knowledge. This paper provides a systematic review of studies on microplastics in drinking water, their evidence, key findings, knowledge gaps, and research needs. The data collected show that microplastics are widespread in drinking water, with large variations in reported concentrations. Standardized methodologies of sampling and analysis are urgently needed. There were more fibrous and fragmented microplastics, with the majority being <10 µm in size and composed of polyester, polyethylene, polypropylene, and polystyrene. Little attention has been paid to the color of microplastics. More research is needed to understand the occurrence and transfer of microplastics throughout the water supply chain and the treatment efficiency of drinking water treatment plants (DWTPs). Methods capable of analyzing microplastics <10 µm and nanoplastics are urgently needed. Potential ecological assessment models for microplastics currently in use need to be improved to take into account the complexity and specificity of microplastics.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos/análisis , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
Environ Res ; 250: 118450, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38360167

RESUMEN

Assessing the relative importance of climate change and human activities is important in developing sustainable management policies for regional land use. In this study, multiple remote sensing datasets, i.e. CHIRPS (Climate Hazard Group InfraRed Precipitation with Station Data) precipitation, MODIS Land Surface Temperature (LST), Enhanced Vegetation Index (EVI), Potential Evapotranspiration (PET), Soil Moisture (SM), WorldPop, and nighttime light have been analyzed to investigate the effect that climate change (CC) and regional human activities (HA) have on vegetation dynamics in eastern India for the period 2000 to 2022. The relative influence of climate and anthropogenic factors is evaluated on the basis of non-parametric statistics i.e., Mann-Kendall and Sen's slope estimator. Significant spatial and elevation-dependent variations in precipitation and LST are evident. Areas at higher elevations exhibit increased mean annual temperatures (0.22 °C/year, p < 0.05) and reduced winter precipitation over the last two decades, while the northern and southwest parts of West Bengal witnessed increased mean annual precipitation (17.3 mm/year, p < 0.05) and a slight cooling trend. Temperature and precipitation trends are shown to collectively impact EVI distribution. While there is a negative spatial correlation between LST and EVI, the relationship between precipitation and EVI is positive and stronger (R2 = 0.83, p < 0.05). Associated hydroclimatic parameters are potent drivers of EVI, whereby PET in the southwestern regions leads to markedly lower SM. The relative importance of CC and HA on EVI also varies spatially. Near the major conurbation of Kolkata, and confirmed by nighttime light and population density data, changes in vegetation cover are very clearly dominated by HA (87%). In contrast, CC emerges as the dominant driver of EVI (70-85%) in the higher elevation northern regions of the state but also in the southeast. Our findings inform policy regarding the future sustainability of vulnerable socio-hydroclimatic systems across the entire state.

6.
Sci Total Environ ; 922: 171321, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423306

RESUMEN

Carbonaceous particles play a crucial role in atmospheric radiative forcing. However, our understanding of the behavior and sources of carbonaceous particles in remote regions remains limited. The Tibetan Plateau (TP) is a typical remote region that receives long-range transport of carbonaceous particles from severely polluted areas such as South Asia. Based on carbon isotopic compositions (Δ14C/δ13C) of water-insoluble particulate carbon (IPC) in total suspended particle (TSP), PM2.5, and precipitation samples collected during 2020-22 at the Nam Co Station, a remote site in the inner TP, the following results were achieved: First, fossil fuel contributions (ffossil) to IPC in TSP samples (28.60 ± 9.52 %) were higher than that of precipitation samples (23.11 ± 8.60 %), and it is estimated that the scavenging ratio of IPC from non-fossil fuel sources was around 2 times that from fossil fuel combustion during the monsoon season. The ffossil of IPC in both TSP and PM2.5 samples peaked during the monsoon season. Because heavy precipitation during the monsoon season scavenges large amounts of long-range transported carbonaceous particles, the contribution of local emissions from the TP largely outweighs that from South Asia during this season. The results of the IPC source apportionment based on Δ14C and δ13C in PM2.5 samples showed that the highest contribution of liquid fossil fuel combustion also occurred in the monsoon season, reflecting increased human activities (e.g., tourism) on the TP during this period. The results of this study highlight the longer lifetime of fossil fuel-sourced IPC in the atmosphere than that of non-fossil fuel sources in the inner TP and the importance of local emissions from the TP during the monsoon season. The findings provide new knowledge for model improvement and mitigation of carbonaceous particles.

7.
Sci Total Environ ; 916: 170208, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246372

RESUMEN

The lockdowns implemented during the coronavirus disease 2019 (COVID-19) pandemic provide a unique opportunity to investigate the impact of emission sources and meteorological conditions on the trans-boundary transportation of black carbon (BC) aerosols to the Tibetan Plateau (TP). In this study, we conducted an integrative analysis, including in-situ observational data, reanalysis datasets, and numerical simulations, and found a significant reduction in the trans-boundary transport of BC to the TP during the 2020 pre-monsoon season as a result of the lockdowns and restrictive measures. Specifically, we observed a decrease of 0.0211 µgm-3 in surface BC concentration over the TP compared to the 2016 pre-monsoon period. Of this reduction, approximately 6.04 % can be attributed to the decrease in emissions during the COVID-19 pandemic, surpassing the 4.47 % decrease caused by changes in meteorological conditions. Additionally, the emission reductions have weakened the trans-boundary transport of South Asia BC to the TP by 0.0179 µgm-2s-1; indicating that the recurring spring atmospheric pollution from South Asia to the TP will be alleviated through the reduction of anthropogenic emissions. Moreover, it is important to note that BC deposition on glaciers contributes significantly to glacier melting due to its enrichment, posing a threat to the water sustainability of the TP. Therefore, urgent measures are needed to reduce emissions from adjacent regions to preserve the TP as the "Asian Water Tower."


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Humanos , Tibet/epidemiología , Pandemias , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Hollín/análisis , Carbono/análisis , Agua/análisis
8.
Environ Pollut ; 344: 123359, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228261

RESUMEN

Atmospheric pollution has detrimental effects on human health and ecosystems. The southern region of the Himalayas, undergoing rapid urbanization and intense human activities, faces poor air quality marked by high aerosol loadings. In this study, we conducted a two-year PM10 sampling in the suburban area (Godavari) of Kathmandu, a representative metropolis situated in the southern part of the central Himalayas. The trace elements were measured to depict aerosol-bound element loadings, seasonality, and potential sources. The mean concentrations of trace elements varied considerably, ranging from 0.27 ± 0.19 ng m-3 for Tl to 1252.78 ng m-3 for Zn. The average concentration of Co and Ni was 1.2 and 22.4 times higher, respectively, than those in Lhasa city in Tibet in the northern Himalayas. The concentration of Pb was 38 times lower than that in Lahore, Pakistan, and 9 times lower than urban sites in India. For the seasonality, the trace element concentrations displayed remarkable variation, with higher concentrations during the non-monsoon seasons and lower concentrations during the monsoon season. This trend was primarily influenced by anthropogenic activities such as low-grade fuel combustion in vehicles, coal combustion in brick kilns, and biomass burning, along with seasonal rainfall that induced aerosol washout. The enrichment factors (EFs) analysis revealed that Cd, Zn, Sb, Ni, Cu, Cr, and Pb had higher EFs, indicating their significant contributions from anthropogenic sources. In contrast, elements like Tl, Co, V, Cs, U, Ba, Th, and Sr, characterized by lower EFs, were mainly associated with natural sources. The Pb isotopic ratio profiles exhibited the Pb in PM10 are derived major contribution from legacy lead. Biomass burning contributed to the Pb source in winter. These findings provide policymakers with valuable insights to develop guidelines and strategies aimed at improving air quality and mitigating the impact of aerosol pollution on human health in the Himalayan region.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Humanos , Contaminantes Atmosféricos/análisis , Oligoelementos/análisis , Monitoreo del Ambiente , Ecosistema , Himalayas , Plomo/análisis , Aerosoles/análisis
9.
Environ Res ; 247: 118288, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262510

RESUMEN

Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the blaTEM gene, whereas 58.3% of isolates in meltwater possessed blaTEM and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and blaTEM (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Bacterias/genética , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Lagos/microbiología , Metales
10.
Environ Pollut ; 342: 123071, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070642

RESUMEN

Mercury (Hg) has received increasing public attention owing to its high toxicity and global distribution capability via long-range atmospheric transportation. Guanzhong Basin (GB) is vital for the industrial and economic development of Shaanxi Province. To determine the concentration, spatial distribution, seasonal variation, sources, and health risks of particulate-bound mercury (PBM), PM2.5 samples were collected at three sampling sites representing urban, rural, and remote areas during winter and summer in GB. The three sampling sites were in Xi'an (XN), Taibai (TB), and the Qinling Mountains (QL). The mean PBM concentrations in XN, TB, and QL in winter were 130 ± 115 pg m-3, 57.5 ± 47.3 pg m-3, and 53.6 ± 38.5 pg m-3, respectively, higher than in summer (13.7 ± 7.11 pg m-3, 8.01 ± 2.86 pg m-3, and 7.75 ± 2.85 pg m-3, respectively). PBM concentrations are affected by precipitation, meteorological conditions (temperature and mixed boundary layer), emission sources, and atmospheric transport. During the sampling period, the PBM dry deposition in XN, TB, and QL was 1.90 µg m-2 (2 months), 0.835 µg m-2 (2 months), and 0.787 µg m-2 (2 months), respectively, lower than the range reported in national megacities. According to backward trajectory and potential source contribution factor (PSCF) analysis, mercury pollution in XN is mainly affected by local pollution source emissions, whereas the polluted air mass in TB and QL originates from local anthropogenic emissions and long-distance atmospheric transmission. The non-carcinogenic health risk values of PBM in XN, TB, and QL in winter and summer were less than 1, indicating that the risk of atmospheric PBM to the health of the residents was negligible.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Mercurio/análisis , Contaminación Ambiental/análisis , Estaciones del Año , Medición de Riesgo , Material Particulado/análisis , China
11.
Environ Pollut ; 341: 122848, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949163

RESUMEN

The navigability of Arctic maritime passages has improved with the rapid retreat of sea ice in recent decades, and it is projected that the Northern Sea Route (NSR) will support further increases in shipping in the future. However, the opening of the NSR may bring potential environmental and climate risks to the Arctic and the rest of the world. This investigation assessed shipping emissions along the NSR and the climate impacts under global warming of 2 °C and 3 °C to support coordinated international decision-making. The results show that the magnitude of annual energy consumption of ships along the NSR is 109 kWh under global warming of 2 °C and 3 °C. The environmental impacts of the shipping decrease with fuel transition to clean, carbon-neutral fuel sources. Specifically, the maximum emission is CO2 (106 t), followed by NOX (104-5 t), CO (103-4 t), SOX (103 t), CH4 (102-3 t), organic carbon (102-3 t), N2O (101-2 t), and black carbon (BC, 101-2 t), in which CO2 and BC have great difference under high and low loads. Total emission exacerbates Arctic and global warming, and it is more significant in the Arctic in the next twenty years and across the rest of the world in the next one hundred years. The greatest climate impact factor is CO2, followed by NOX and BC which are more important in global and Arctic warming, respectively.


Asunto(s)
Dióxido de Carbono , Navíos , Clima , Ambiente , Regiones Árticas , Carbono
12.
Sci Total Environ ; 912: 168555, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37979855

RESUMEN

Natural processes and human activities impact mercury (Hg) pollution in rivers. Investigating the individual contributions and interactions of factors affecting variations in Hg concentrations, particularly under climate change, is crucial for safeguarding watershed ecosystems and human health. We collected 381 water samples from China's Weihe River Basin (WRB) during dry and wet seasons to assess the total Hg (THg) concentration. Results revealed high Hg concentrations in the WRB (0.1-2200.9 ng/L, mean 126.2 ± 335.5 ng/L), with higher levels during the wet season (wet season: 249.1 ± 453.5 ng/L, dry season: 12.7 ± 14.0 ng/L), particularly in the mainstream and southern tributaries of the Weihe River. Industrial pollution (contributing 26.2 %) and precipitation (contributing 33.5 %) drove spatial heterogeneity in THg concentrations during the dry and wet seasons, respectively. Notably, combined explanatory power increased to 47.9 % when interaction was considered, highlighting the amplifying effect of climate change, particularly precipitation, on the impact of industrial pollution. The middle and downstream of the Weihe River, especially the Guanzhong urban agglomeration, were identified as high-risk regions for Hg pollution. With ongoing climate change the risk of Hg exposure in the WRB is expected to escalate. This study lays a robust scientific foundation for the effective management of Hg pollution in analogous river systems worldwide.

13.
Environ Sci Pollut Res Int ; 31(3): 3413-3424, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38114701

RESUMEN

Tibetan Plateau (TP) is known as the water tower of Asia, and glaciers are solid reservoirs that can regulate the amount of water. Black carbon (BC), as one of the important factors accelerating glacier melting, is causing evident environmental effects in snow and ice. However, a systematical summary of the potential sources, analytical methods, distributions, and environmental effects of BC in snow and ice on the TP's glaciers is scarce. Therefore, this study drew upon existing research on snow and ice BC on glaciers of the TP to describe the detection methods and uncertainties associated with them to clarify the concentrations of BC in snow and ice and their climatic effects. The primary detection methods are the optical method, the thermal-optical method, the thermochemical method, and the single-particle soot photometer method. However, few studies have systematically compared the results of BC and this study found that concentrations of BC in different types of snow and ice varied by 1-3 orders of magnitude, which drastically affected the regional hydrologic process by potentially accelerating the ablation of glaciers by approximately 15% and reducing the duration of snow accumulation by 3-4 days. In general, results obtained from the various testing methods differ drastically, which limited the systematical discussion. Accordingly, a universal standard for the sampling and measurement should be considered in the future work, which will be beneficial to facilitate the comparison of the spatiotemporal features and to provide scientific data for the model-simulated climatic effects of BC.


Asunto(s)
Nieve , Hollín , Tibet , Monitoreo del Ambiente/métodos , Cubierta de Hielo , Agua , Carbono/análisis
14.
Environ Sci Technol ; 58(1): 459-467, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38152050

RESUMEN

Atmospheric phosphorus is a vital nutrient for ecosystems whose sources and fate are still debated in the fragile Himalayan region, hindering our comprehension of its local ecological impact. This study provides novel insights into atmospheric phosphorus based on the study of total suspended particulate matter at the Qomolangma station. Contrary to the prevailing assumptions, we show that biomass burning (BB), not mineral dust, dominates total dissolved phosphorus (TDP, bioavailable) deposition in this arid region, especially during spring. While total phosphorus is mainly derived from dust (77% annually), TDP is largely affected by the transport of regional biomass-burning plumes from South Asia. During BB pollution episodes, TDP causing springtime TDP fluxes alone accounts for 43% of the annual budget. This suggests that BB outweighs dust in supplying bioavailable phosphorus, a critical nutrient, required to sustain Himalayas' ecological functions. Overall, this first-hand field evidence refines the regional and global phosphorus budget by demonstrating that BB emission, while still unrecognized, is a significant source of P, even in the remote mountains of the Himalayas. It also reveals the heterogeneity of atmospheric phosphorus deposition in that region, which will help predict changes in the impacted ecosystems as the deposition patterns vary.


Asunto(s)
Contaminantes Atmosféricos , Biomasa , Contaminantes Atmosféricos/análisis , Fósforo , Ecosistema , Himalayas , Polvo/análisis , Material Particulado/análisis , Minerales , Proteínas de Unión al ADN , Monitoreo del Ambiente , Aerosoles/análisis
16.
Environ Sci Technol ; 57(49): 20844-20853, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019560

RESUMEN

Glacier melting exports a large amount of nitrate to downstream aquatic ecosystems. Glacial lakes and glacier-fed rivers in proglacial environments serve as primary recipients and distributors of glacier-derived nitrate (NO3-), yet little is known regarding the sources and cycling of nitrate in these water bodies. To address this knowledge gap, we conducted a comprehensive analysis of nitrate isotopes (δ15NNO3, δ18ONO3, and Δ17ONO3) in waters from the glacial lake and river of the Rongbuk Glacier-fed Basin (RGB) in the mountain Everest region. The concentrations of NO3- were low (0.43 ± 0.10 mg/L), similar to or even lower than those observed in glacial lakes and glacier-fed rivers in other high mountain regions, suggesting minimal anthropogenic influence. The NO3- concentration decreases upon entering the glacial lake due to sedimentation, and it increases gradually from upstream to downstream in the river as a soil source is introduced. The analysis of Δ17ONO3 revealed a substantial contribution of unprocessed atmospheric nitrate, ranging from 34.29 to 56.43%. Denitrification and nitrification processes were found to be insignificant in the proglacial water of RGB. Our study highlights the critical role of glacial lakes in capturing and redistributing glacier-derived NO3- and emphasizes the need for further investigations on NO3- transformation in the fast-changing proglacial environment over the Tibetan Plateau and other high mountain regions.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Agua , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , China
17.
Environ Res ; 239(Pt 2): 117444, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858689

RESUMEN

Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by ß-lactam genes blaCTX-M (21.1-71.1%), blaACC (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of blaACC,blaCTX-M,blaSHV,blaampC,qnrA, sulI, tetA and blaTEM revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.


Asunto(s)
Genes Bacterianos , Cubierta de Hielo , Cubierta de Hielo/microbiología , Prevalencia , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias , Antibacterianos/farmacología , Antibacterianos/análisis , Metales/análisis , Bacterias Gramnegativas/genética , Farmacorresistencia Bacteriana/genética
20.
Environ Res ; 234: 116541, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419198

RESUMEN

To explore the spatio-temporal dynamics and mechanisms underlying vegetation cover in Haryana State, India, and implications thereof, we obtained MODIS EVI imagery together with CHIRPS rainfall and MODIS LST at annual, seasonal and monthly scales for the period spanning 2000 to 2022. Additionally, MODIS Potential Evapotranspiration (PET), Ground Water Storage (GWS), Soil Moisture (SM) and nighttime light datasets were compiled to explore their spatial relationships with vegetation and other selected environmental parameters. Non-parametric statistics were applied to estimate the magnitude of trends, along with correlation and residual trend analysis to quantify the relative influence of Climate Change (CC) and Human Activities (HA) on vegetation dynamics using Google Earth Engine algorithms. The study reveals regional contrasts in trends that are evidently related to elevation. An annual increasing trend in rainfall (21.3 mm/decade, p < 0.05), together with augmented vegetation cover and slightly cooler (-0.07 °C/decade) LST is revealed in the high-elevation areas. Meanwhile, LST in the plain regions exhibit a warming trend (0.02 °C/decade) and decreased in vegetation and rainfall, accompanied by substantial reductions in GWS and SM related to increased PET. Linear regression demonstrates a strongly significant relationship between rainfall and EVI (R2 = 0.92), although a negative relationship is apparent between LST and vegetation (R2 = -0.83). Additionally, increased LST in the low-elevation parts of the study area impacted PET (R2 = 0.87), which triggered EVI loss (R2 = 0.93). Moreover, increased HA resulted in losses of 25.5 mm GSW and 1.5 mm SM annually. The relative contributions of CC and HA are shown to vary with elevation. At higher elevations, CC and HA contribute respectively 85% and 15% to the increase in EVI. However, at lower elevations, reduced EVI is largely (79%) due to human activities. This needs to be considered in managing the future of vulnerable socio-ecological systems in the state of Haryana.


Asunto(s)
Ecosistema , Suelo , Humanos , Cambio Climático , India
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA